Spectral convergence of the connection Laplacian from random samples

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral convergence of the connection Laplacian from random samples

Spectral methods that are based on eigenvectors and eigenvalues of discrete graph Laplacians, such as DiffusionMaps and Laplacian Eigenmaps, are often used for manifold learning and nonlinear dimensionality reduction. It was previously shown by Belkin&Niyogi (2007, Convergence of Laplacian eigenmaps, vol. 19. Proceedings of the 2006 Conference on Advances in Neural Information Processing System...

متن کامل

Convergence of Laplacian spectra from random samples

Eigenvectors and eigenvalues of discrete graph Laplacians are often used for manifold learning and nonlinear dimensionality reduction. It was previously proved by Belkin and Niyogi [3] that the eigenvectors and eigenvalues of the graph Laplacian converge to the eigenfunctions and eigenvalues of the Laplace-Beltrami operator of the manifold in the limit of infinitely many data points sampled ind...

متن کامل

Laplacian Spectral Properties of Graphs from Random Local Samples

The Laplacian eigenvalues of a network play an important role in the analysis of many structural and dynamical network problems. In this paper, we study the relationship between the eigenvalue spectrum of the normalized Laplacian matrix and the structure of ‘local’ subgraphs of the network. We call a subgraph local when it is induced by the set of nodes obtained from a breath-first search (BFS)...

متن کامل

On the Convergence of Spectral Clustering on Random Samples: The Normalized Case

Given a set of n randomly drawn sample points, spectral clustering in its simplest form uses the second eigenvector of the graph Laplacian matrix, constructed on the similarity graph between the sample points, to obtain a partition of the sample. We are interested in the question how spectral clustering behaves for growing sample size n. In case one uses the normalized graph Laplacian, we show ...

متن کامل

Spectral Distributions of Adjacency and Laplacian Matrices of Random Graphs

In this paper, we investigate the spectral properties of the adjacency and the Laplacian matrices of random graphs. We prove that (i) the law of large numbers for the spectral norms and the largest eigenvalues of the adjacency and the Laplacian matrices; (ii) under some further independent conditions, the normalized largest eigenvalues of the Laplacian matrices are dense in a compact interval a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Inference

سال: 2016

ISSN: 2049-8764,2049-8772

DOI: 10.1093/imaiai/iaw016